A motorcyclist heading east through a small Iowa town accelerates after he passes a signpost at x=0 marking the city limits. His acceleration is constant (4.0 m/s2). At time t =0 he is 5 m east of the signpost and has a velocity of 15 m/s.
1) Find his position and velocity at time t=2 sec.
2) Where is the motorcyclist when his velocity is 25 m/s?
3) If the acceleration is 2.0 m/s2 instead of 4.0 m/s2, where is the cyclist, 5.0 s after he passes the signpost if x0=5.0m and v0x=15m/s?
4) How fast is he moving, 5.0 s after he passes the signpost if x0=5.0m and v0x=15m/s?

Respuesta :

Answer:

1) [tex]v_2=23\ m.s^{-1}[/tex]              &     [tex]x_2=43\ m[/tex] east of sign post

2) [tex]x'=55\ m[/tex] east of sign post

3) [tex]x_n=205\ m[/tex] east of the signpost.

4) [tex]v_z=35\ m.s^{-1}[/tex]

Explanation:

Given:

  • position of motorcyclist on entering the city at the signpost, [tex]x_0=0\ m[/tex]
  • time of observation after being at x=5m east of the signpost, [tex]t_m=0\ s[/tex]
  • constant acceleration of the on entering the city, [tex]a=4\ m.s^{-2}[/tex]
  • distance of the motorcyclist moments later after entering, [tex]s_m=5\ m[/tex]
  • velocity of the motorcyclist moments later after entering, [tex]u_m=15\ m.s^{-1}[/tex]

Now the initial velocity on at the sign board:

[tex]u_m^2=u^2+2.a.x_m[/tex]

where:

[tex]u=[/tex] initial velocity of entering the city at the signpost

Putting respective values:

[tex]15^2=u^2+2\times 4\times 5[/tex]

[tex]u=13.6015\ m.s^{-1}[/tex]

1)

Position at time [tex]t_2=2\ s[/tex] sec.:

Using equation of motion,

[tex]x_2=u_m.t_2+\frac{1}{2} a.(t_2)^2+5[/tex] because it has already covered 5m before that point

[tex]x_2=15\times 2+0.5\times 4\times 2^2+5[/tex]

[tex]x_2=43\ m[/tex] east of sign post

Velocity at time [tex]t_2=2\ s[/tex] sec.:

[tex]v_2=u_m+a.t_2[/tex]

[tex]v_2=15+4\times 2[/tex]

[tex]v_2=23\ m.s^{-1}[/tex]

2)

Position when the velocity is [tex]v'=25\ m.s^{-1}[/tex]:

using equation of motion,

[tex]v'^2=u_m^2+2.a.x'+5[/tex]

[tex]25^2=15^2+2\times 4\times x'+5[/tex]

[tex]x'=55\ m[/tex] east of sign post

3)

Given that:

acceleration be, [tex]a_n=2\ m.s^{-2}[/tex]

time, [tex]t_n=5\ s[/tex]

Position after the new acceleration and the new given time:

using equation of motion,

[tex]x_n=u_m.t_n+\frac{1}{2} a_n.(t_n)^2+5[/tex]

[tex]x_n=15\times 5+0.5\times 2\times 5^2+5[/tex]

[tex]x_n=205\ m[/tex] east of the signpost.

4)

now time of observation, [tex]t_z=5\ s[/tex]

[tex]v_z=u_m+a.t_z[/tex]

[tex]v_z=15+4\times 5[/tex]

[tex]v_z=35\ m.s^{-1}[/tex]