the combined age of april and laura is 23 years. laura's age is two years more than half of april's age. what is laura's age

Respuesta :

Laura's age is 9 years.

Solution:

Let x be the age of April.

Laura's age = 2 years more than half of April's age

Convert statement into algebraic expression:

Half of April's age = [tex]\frac{x}{2}[/tex]

2 years more than half of April's age = [tex]\frac{x}{2}+2[/tex]

Combined age of April and Laura = 23

⇒ April's age + Laura's age = 23

[tex]$\Rightarrow \ \ x+(\frac{x}{2}+2) =23[/tex]

[tex]$\Rightarrow \ \ x+\frac{x}{2}+2 =23[/tex]

[tex]$\Rightarrow \ \ \frac{x}{1}+\frac{x}{2}+\frac{2}{1} =23[/tex]

To add the fractions make the denominators same.

Multiplying 2 on both numerator and denominator of unlike terms, we get

[tex]$\Rightarrow \ \ \frac{x\times2}{1\times2}+\frac{x}{2}+\frac{2\times2}{1\times2} =23[/tex]

[tex]$\Rightarrow \ \ \frac{2x}{2}+\frac{x}{2}+\frac{4}{2} =23[/tex]

Denominators are same, now add the fractions.

[tex]$\Rightarrow \ \ \frac{2x+x+4}{2} =23[/tex]

Do cross multiplication.

[tex]$\Rightarrow \ \ 2x+x+4=23\times2[/tex]

[tex]$\Rightarrow \ \ 3x=46-4[/tex]

[tex]$\Rightarrow \ \ 3x=42[/tex]

[tex]$\Rightarrow \ \ x=14[/tex]

Aprils's age = 14 years

Laura's age = [tex]\frac{14}{2}+2[/tex]

                    = 7 + 2

Laura's age = 9

Hence Laura's age is 9 years.