Answer: The change in entropy for the given system is [tex]7\times 10^1J/mol.K[/tex]
Explanation:
To calculate the entropy change for given Gibbs free energy, we use the equation:
[tex]\Delta G=\Delta H-T\Delta S[/tex]
where,
[tex]\Delta G[/tex] = Gibbs free energy = -77.0 kJ/mol = -77000 J/mol (Conversion factor: 1 kJ = 1000 J)
[tex]\Delta H[/tex] = change in enthalpy = -56.9 kJ/mol = -56900 J/mol
T = temperature = 300 K
[tex]\Delta S[/tex] = change in entropy = ?
Putting values in above equation, we get:
[tex]-77000J/mol=-56900-(300K\times \Delta S)\\\\\Delta S=\frac{-56900+77000}{300}=67J/mol.K=7\times 10^1J/mol.K[/tex]
Hence, the change in entropy for the given system is [tex]7\times 10^1J/mol.K[/tex]