Kinetic Energy (K) has dimension kg m2/s2. It can be written in terms of the momentum (p) and mass (m) as K = p^2 / 2m. Determine the proper units for momentum using dimensional analysis.

Respuesta :

Answer : The units for momentum is, kg.m/s

Explanation : Given,

Dimension of Kinetic Energy (K) = [tex]kg.m^2/s^2[/tex]

Dimension of mass (m) = kg

The relation between kinetic energy and momentum will be:

[tex]K=\frac{p^2}{2m}\\\\p=\sqrt{2mK}[/tex]

Now put all the dimension in this expression, we get:

[tex]p=\sqrt{2mK}[/tex]

[tex]p=\sqrt{kg\times kg.m^2/s^2}[/tex]

[tex]p=\sqrt{kg^2m^2/s^2}[/tex]

[tex]p=kg.m/s[/tex]

The dimensional formula of Kinetic Energy = [tex]ML^2T^{-2}[/tex]

The dimensional formula of momentum = [tex]MLT^{-1}[/tex]

Thus, the units for momentum is, kg.m/s