Bharbie
contestada

cos( pi/3+ B) = _____

½(cosB - √3sinB)
½(cosB + √3sinB)
√3(cosB - ½sinB)
√3(cosB + ½sinB)

Respuesta :

The required "option A) [tex]\dfrac{1}{2} (\cos B-\sqrt{3}\sin B)[/tex]" is correct.

Step-by-step explanation:

We have,

[tex]\cos(\dfrac{\pi}{3}+B)[/tex]

To find, the value of [tex]\cos(\dfrac{\pi}{3}+B)[/tex] = ?

∴ [tex]\cos(\dfrac{\pi}{3}+B)[/tex]

= [tex]\cos(60+B)[/tex]

We know that,

[tex]\cos(A+B)=\cos Acos B-\sin A\sin B[/tex]

∴ [tex]\cos(60+B)[/tex]

[tex]=\cos 60\cos B-\sin 60\sin B[/tex]

= [tex]\dfrac{1}{2} \cos B-\dfrac{\sqrt{3}}{2}\sin B[/tex]

Taking [tex]\dfrac{1}{2}[/tex] as common, we get

= [tex]\dfrac{1}{2} (\cos B-\sqrt{3}\sin B)[/tex]

Thus, the required "option A) [tex]\dfrac{1}{2} (\cos B-\sqrt{3}\sin B)[/tex]" is correct.