Answer : Yes, all the water will vaporize.
Solution :
We have to determine the total heat absorbed by the sample.
The process involved in this problem are :
[tex](1):H_2O(l)(27.1^oC)\rightarrow H_2O(l)(100^oC)\\\\(2):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)[/tex]
The expression used will be:
[tex]Q=[m\times c_{p,l}\times (T_{final}-T_{initial})]+m\times \Delta H_{vap}[/tex]
where,
m = mass of sample = 35.0 g
[tex]c_{p,l}[/tex] = specific heat of liquid water = [tex]4.184J/g^oC[/tex]
[tex]\Delta H_{vap}[/tex] = enthalpy change for fusion = [tex]40.7kJ/mole=40700J/mole=\frac{40700J/mole}{18.02g/mole}J/g=2258.6J/g[/tex]
Now put all the given values in the above expression, we get:
[tex]Q=[35.0g\times 4.184J/g^oC\times (100-27.1)^oC]+35.0g\times 2258.6J/g[/tex]
[tex]Q=89726.476J=89.73kJ[/tex]
From this we conclude that the calculated heat energy is less than the given heat energy that means all the water will vaporize.
Hence, all the water will vaporize.