A dietitian read in a survey that at least 55% of adults do not eat breakfast at least three days a week. To verify this, she selected a random sample of 80 adults and asked them how many days a week they skipped breakfast. A total of 50% responded that they skipped breakfast at least three days a week. At α=0.10 , test the claim.

Respuesta :

Answer:

[tex]z=\frac{0.5 -0.55}{\sqrt{\frac{0.55(1-0.55)}{80}}}=-0.899[/tex]  

[tex]p_v =P(z<-0.899)=0.184[/tex]  

So the p value obtained was a very high value and using the significance level given [tex]\alpha=0.1[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 10% of significance the proportion of adults who do not eat breakfast at least three days a week is NOT significantly less than 0.55.  

Step-by-step explanation:

Data given and notation

n=80 represent the random sample taken

[tex]\hat p=0.5[/tex] estimated proportion of adults who do not eat breakfast at least three days a week

[tex]p_o=0.55[/tex] is the value that we want to test

[tex]\alpha=0.1[/tex] represent the significance level

Confidence=90% or 0.90

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the proportion is at least 0.55, so the system of hypothesis would be:  

Null hypothesis:[tex]p\geq 0.55[/tex]  

Alternative hypothesis:[tex]p < 0.55[/tex]  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.5 -0.55}{\sqrt{\frac{0.55(1-0.55)}{80}}}=-0.899[/tex]  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level provided [tex]\alpha=0.1[/tex]. The next step would be calculate the p value for this test.  

Since is a left tailed test the p value would be:  

[tex]p_v =P(z<-0.899)=0.184[/tex]  

So the p value obtained was a very high value and using the significance level given [tex]\alpha=0.1[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 10% of significance the proportion of adults who do not eat breakfast at least three days a week is NOT significantly less than 0.55.