Respuesta :
Answer:
[tex]1.34 * 10^{3}[/tex]m/s
Explanation:
Parameters given:
distance of the proton form the insulating sheet = 0.360mm
speed of the proton, [tex]v_{x}[/tex] = 990m/s
Surface charge density, σ = 2.34 x [tex]10^{-9}[/tex] C/[tex]m^{2}[/tex]
We need to calculate the speed at time, t = 7.0 * [tex]10^{-8}[/tex]s.
We know that the proton is moving parallel to the sheet, hence, we can say it is moving in the x direction, with a speed [tex]v_{x}[/tex] on the axis.
The electric force acting on the proton moves in the y direction, so this means it is moving with velocity [tex]v_{y}[/tex] in the y axis.
Hence, the resultant velocity of the proton is given by:
[tex]v = \sqrt{v_{x} ^{2} + v_{y} ^{2}}[/tex]
[tex]v_{x}[/tex] = 990m/s from the question. We need to find [tex]v_{y}[/tex] and then the resultant velocity v.
Electric field is given in terms of surface charge density, σ as:
E = σ/ε0
where ε0 = permittivity of free space
=> [tex]E = \frac{2.34 * 10^{-9} } {2 * 8.85418782 * 10^{-12} }[/tex]
E = 132 N/C
Electric Force, F is given in terms of Electric field:
F = eE
where e = electronic charge
=> F = ma = eE
∴ a = eE/m
where
a = acceleration of the proton
m = mass of proton
[tex]a = \frac{1.60 * 10^{-19} * 132}{1.672 * 10^{-27} }[/tex]
a = 1.3 * [tex]10^{10}[/tex] m/[tex]s^{2}[/tex]
Therefore, at time, t = 7.0 * [tex]10^{-8}[/tex], we can use one of the equations of linear motion to find the velocity in the y axis:
[tex]a = \frac{v_{y} - v_{0}}{t} \\\\=> v_{y} = v_{0} + at[/tex]
[tex]v_{y}[/tex] = 0 + (1.3 * [tex]10^{10}[/tex] * 7.0 * [tex]10^{-8}[/tex])
[tex]v_{y}[/tex] = 910 m/s
∴ [tex]v = \sqrt{v_{x} ^{2} + v_{y} ^{2}}[/tex]
[tex]v = \sqrt{990^{2} + 910^{2} }[/tex]
[tex]v = \sqrt{1808200}[/tex]
v = 1344.69 m/s = [tex]1.34 * 10^{3}[/tex]m/s