Respuesta :

Answer:

Part 1) [tex]sin(B)=\frac{21}{29}[/tex]

Part 2) [tex]csc(A)=\frac{29}{20}[/tex]

Part 3) [tex]cot(A)=\frac{21}{20}[/tex]

Step-by-step explanation:

The complete question is

Consider this right triangle. 21 29 20 Write the ratio equivalent to: Sin B - CscA- Cot B

The picture of the question in the attached figure

Part 1) Write the ratio equivalent to: Sin B

we know that

In the right triangle ABC

[tex]sin(B)=\frac{AC}{AB}[/tex] ----> by SOH (opposite side divided by the hypotenuse)

substitute the values

[tex]sin(B)=\frac{21}{29}[/tex]

Part 2) Write the ratio equivalent to: Csc A

we know that

In the right triangle ABC

[tex]csc(A)=\frac{1}{sin(A)}[/tex]

[tex]sin(A)=\frac{BC}{AB}[/tex] -----> by SOH (opposite side divided by the hypotenuse)

substitute the values

[tex]sin(A)=\frac{20}{29}[/tex]

therefore

[tex]csc(A)=\frac{29}{20}[/tex]

Part 3) Write the ratio equivalent to: Cot A

we know that

In the right triangle ABC

[tex]cot(A)=\frac{1}{tan(A)}[/tex]

[tex]tan(A)=\frac{BC}{AC}[/tex] -----> by TOA (opposite side divided by the adjacent side)

substitute the values

[tex]tan(A)=\frac{20}{21}[/tex]

therefore

[tex]cot(A)=\frac{21}{20}[/tex]

Ver imagen calculista