Answer:
[tex]v(0)=2m/s[/tex]
Explanation:
The instantaneous velocity of a point mass that executes a simple harmonic movement is given by:
[tex]v(t)=\omega *A*cos(\omega t + \phi)[/tex]
Where:
[tex]\omega=Angular\hspace{3}frequency\\A=Amplitude\\\phi=Initial\hspace{3}phase[/tex]
Express the amplitude in meters:
[tex]10cm*\frac{1m}{100cm} =0.1m[/tex]
The angular frequency can be found using the next equation:
[tex]\omega=\sqrt{\frac{k}{m} }[/tex]
Using the data provided:
[tex]\omega=\sqrt{\frac{400}{1} } =20[/tex]
At the equilibrium position:
[tex]\phi=0[/tex]
[tex]v(0)=20*(0.1)cos(20*0+0)=2*cos(0)=2*1=2m/s[/tex]