HI decomposes into its elements according to second-order kinetics. How long will it take for the concentration to decrease to 1.25 M from an initial concentration of 2.25 M? The rate constant, k, equals 1.6 × 10−3 M−1hr−1.
2 HI(g) → H2(g) + I2(g)

Respuesta :

Answer : The time taken by the reaction is, [tex]2.2\times 10^2hr[/tex]

Explanation :

The expression used for second order kinetics is:

[tex]kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}[/tex]

where,

k = rate constant = [tex]1.6\times 10^{-3}M^{-1}s^{-1}[/tex]

t = time = ?

[tex][A_t][/tex] = final concentration = 1.25 M

[tex][A_o][/tex] = initial concentration = 2.25 M

Now put all the given values in the above expression, we get:

[tex](1.6\times 10^{-3})\times t=\frac{1}{1.25}-\frac{1}{2.25}[/tex]

[tex]t=222.222hr\approx 2.2\times 10^2hr[/tex]

Therefore, the time taken by the reaction is, [tex]2.2\times 10^2hr[/tex]