Answer:
Lower limit = 0.76
Upper limit = 0.84
Step-by-step explanation:
We are given the following in the question:
Sample size, n = 350
Number of drivers that buckle = 280
Formula:
[tex]p' = \dfrac{x}{n} = \dfrac{280}{350} = 0.8[/tex]
[tex]q' = 1-p' = 1 - 0.8 = 0.2[/tex]
The standard deviation for sp =
[tex]=\sqrt{\displaystyle\frac{p'q'}{n}}\\\\=\sqrt{\dfrac{0.8\times 0.2}{350}} = 0.02138[/tex]
95% Confidence Interval:
[tex]p' \pm z_{critical}(s_p)[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.05} = \pm 1.96[/tex]
Putting the values, we get,
[tex]0.8 \pm 1.96(0.02138)\\= 0.8 \pm 0.0419048\\=(0.7580952, 0.8419048)\\\approx (0.76,0.84)[/tex]
Lower limit = 0.76
Upper limit = 0.84