Answer
Q(final) = 97.4090668112
Explanation:
dQ/dt = k(Q - 70)
dQ/(Q - 70) = kdt
In(Q(final) - 70)/(Q(initial) - 70) = kt
(Q(final) - 70)/(Q(initial) - 70) = e^(kt)
Given that,
t = 1
k = 0.8
Q(initial) = 131
(Q(final) - 70)/(131 - 70) = e^(1*-0.8)
(Q(final) - 70)/(61) = e^0.8
(Q(final) - 70)/(61) = 0.44932896411
Q(final) - 70 = 0.44932896411*61
Q(final) - 70 = 27.4090668112
Q(final) = 27.4090668112 + 70
Q(final) = 97.4090668112