Respuesta :

The product of the rational expressions [tex]\dfrac{7x}{x-4}.\dfrac{x}{x+7}[/tex] = [tex]\dfrac{7x^2}{x^2+3x-28}[/tex]

Step-by-step explanation:

We have,

[tex]\dfrac{7x}{x-4}.\dfrac{x}{x+7}[/tex]

To find, the product of the rational expressions [tex]\dfrac{7x}{x-4}.\dfrac{x}{x+7}[/tex] = ?

∴ [tex]\dfrac{7x}{x-4}.\dfrac{x}{x+7}[/tex]

= [tex]\dfrac{7x.x}{(x-4)(x+7)}[/tex]

= [tex]\dfrac{7x^2}{(x(x+7)-4(x+7)}[/tex]

= [tex]\dfrac{7x^2}{x^2+7x-4x-28}[/tex]

= [tex]\dfrac{7x^2}{x^2+3x-28}[/tex]

Thus, the product of the rational expressions [tex]\dfrac{7x}{x-4}.\dfrac{x}{x+7}[/tex] = [tex]\dfrac{7x^2}{x^2+3x-28}[/tex]