contestada

slader A transcontinental flight of 4890 km is scheduled to take 40 min longer westward than eastward. The airspeed of the airplane is 980 km/h, and the jet stream it will fly through is presumed to move due east. What is the assumed speed of the jet stream

Respuesta :

Answer:

[tex]v_{s}=65.2km/h[/tex]

Explanation:

Given data

Flight distance S=4890 km

Time difference Δt=t₂-t₁=40 min

Air speed of plane=980 km/h

To find

Speed of jet stream

Solution

When moving in the same direction as the jet stream time taken as t₁=d/(v+vs),v is velocity of plane and vs is velocity of plane

While moving in opposite direction t₂=d/(v+vs)

So

[tex]t_{2}-t_{1}=\frac{d}{(v-v_{s}) } - \frac{d}{(v+v_{s}) }\\t_{2}-t_{1}=\frac{d(v+v_{s})-d(v-v_{s})}{(v-v_{s})(v+v_{s})} \\t_{2}-t_{1}=\frac{2dv_{s}}{(v)^{2} -(v_{s})^{2} }\\0.666667h=\frac{2(4890km)v_{s}}{(980km/h)^{2} -(v_{s})^{2} }\\0.666667((980km/h)^{2} -(v_{s})^{2})=9780v_{s}\\640267-0.666667(v_{s})^{2}-9780v_{s}=0\\0.666667(v_{s})^{2}+9780v_{s}-640267=0[/tex]

Apply quadratic formula to solve for vs

So

[tex]v_{s}=65.2km/h[/tex]