Answer:
D
Step-by-step explanation:
Using sine and cosine ratios in the right triangle and the exact values
sin30° = [tex]\frac{1}{2}[/tex] and cos30° = [tex]\frac{\sqrt{3} }{2}[/tex]
sin30° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{AC}{10}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )
2AC = 10 ( divide both sides by 2 )
AC = 5
-------------------------------------------------------
cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BC}{AB}[/tex] = [tex]\frac{BC}{10}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )
2BC = 10[tex]\sqrt{3}[/tex] ( divide both sides by 2 )
BC = 5[tex]\sqrt{3}[/tex]