Respuesta :

Answer:

The roots of the polynomial equation [tex]x^{3}-4x^{2}+x+26=0[/tex] are[tex]x=-2, 3+2i\ and\ 3-2i[/tex].

Step-by-step explanation:

The polynomial provided is:

[tex]x^{3}-4x^{2}+x+26=0[/tex]

As the polynomials highest degree is 3 there will be 3 roots of the polynomial equation.

The first root can be determined by the hit-and-trial method.

For x = 2,

[tex]x^{3}-4x^{2}+x+26=0\\(2)^{3}-4(2)^{2}+(2)+26=0\\20\neq 0[/tex]

For x = - 2

[tex]x^{3}-4x^{2}+x+26=0\\(-2)^{3}-4(-2)^{2}+(-2)+26=0\\0=0[/tex]

Thus, one of the roots of the polynomial [tex]x^{3}-4x^{2}+x+26=0[/tex] is [tex]x=-2[/tex] or one factor is [tex](x+2)[/tex].

Now divide he polynomial with this factor as follows:

[tex]\frac{x^{3}-4x^{2}+x+26}{x+2} =x^{2}-6x+13[/tex]

The resultant polynomial is a quadratic equation.

Solve the equation [tex]x^{2}-6x+13[/tex] as follows:

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac} }{2a} \\=\frac{-(-6)\pm\sqrt{(-6)^{2}-4\times1\times13} }{2\times1} \\=\frac{6\pm\sqrt{-16} }{2} \\=\frac{6\pm4i }{2} \\=3\pm2i[/tex]

Thus, the roots of the polynomial equation [tex]x^{3}-4x^{2}+x+26=0[/tex] are[tex]x=-2, 3+2i\ and\ 3-2i[/tex].

Answer:

3 +or- 2i, -2

Step-by-step explanation:

Looked up the answer for a test but couldn't find the right one so I just guessed and this is what the correct answer was when I went back and checked. Hope this helps!