Respuesta :
Step-by-step explanation:
[tex] \angle \: A + \angle \: B + \angle \: C = 180 \degree \\ \therefore \: 18 \degree + \angle \: B + 140 \degree = 180 \degree \\ \therefore \: \angle \: B + 158 \degree = 180 \degree \\ \therefore \: \angle \: B = 180 \degree - 158 \degree \\ \huge \red{ \boxed{\therefore \: \angle \: B = 22 \degree}}[/tex]
The user @Hrishii is correct about the value of angle B.
Once you know all three angles, you can use the law of sines to find the missing sides.
----------------------------------------------
Let's use the law of sines to find side b
b/sin(B) = a/sin(A)
b/sin(22) = 1/sin(18)
b = sin(22)*1/sin(18)
b = 1.21225240111352
b = 1.21 rounding to two decimal places
----------------------------------------------
Repeat for side c
c/sin(C) = a/sin(A)
c/sin(140) = 1/sin(18)
c = sin(140)*1/sin(18)
c = 2.08010440004024
c = 2.08 rounding to two decimal places
==============================================
The fully solved triangle is
A = 18 degrees
B = 22 degrees
C = 140 degrees
a = 1
b = 1.21
c = 2.08
decimal values are approximate