Answer:
[tex]x = \sqrt{m(\frac{a}{b})^{2} +n }[/tex]
Step-by-step explanation:
[tex]a\sqrt{(\frac{x^{2} - n }{m}) } = \frac{a^{2} }{b}[/tex]
[tex]\sqrt{\frac{x^{2} - n }{m} } = \frac{a}{b}[/tex] [Divide both sides by [tex]a[/tex]]
[tex]\frac{x^{2} - n}{m} = (\frac{a}{b} )^{2}[/tex] [Square both sides]
[tex]x^{2} -n = m(\frac{a}{b} )^{2}[/tex] [Multiply both sides by m]
[tex]x^{2} =m(\frac{a}{b} )^{2} + n[/tex] [Bring n to the right]
[tex]x = \sqrt{m(\frac{a}{b})^{2} +n }[/tex] [Square root both sides]