Element X decays radioactively with a half-life of eight minutes. If there are 800 g of element X, how long, to the nearest 10th of a minute, would it take the element to decay 22g.

Respuesta :

Answer: 41.5 min

Step-by-step explanation:

This problem can be solved with the Radioactive Half Life Formula:  

[tex]A=A_{o}.2^{\frac{-t}{h}}[/tex] (1)

Where:  

[tex]A=22 g[/tex] is the final amount of the radioactive element

[tex]A_{o}=800 g[/tex] is the initial amount of the radioactive element  

[tex]t[/tex] is the time elapsed  

[tex]h=8 min[/tex] is the half life of the radioactive element  

So, we need to substitute the given values and find [tex]t[/tex] from (1):  

[tex]22 g=(800 g) 2^{\frac{-t}{8 min}}[/tex] (2)  

[tex]\frac{22 g}{800 g}=2^{\frac{-t}{8 min}}[/tex] (3)  

[tex]\frac{11}{400}=2^{\frac{-t}{8 min}}[/tex] (4)  

Applying natural logarithm in both sides:  

[tex]ln(\frac{11}{400})=ln(2^{\frac{-t}{8 min}})[/tex] (5)  

[tex]-3.593=-\frac{t}{8 min}ln(2)[/tex] (6)  

Clearing [tex]t[/tex]:

[tex]t=41.46 min \approx 41.5 min[/tex] This is the time elapsed