Find an equation of the line containing the given pair of points in​ point-slope form and in​ slope-intercept form.
​(1​,5​) and ​(3​,6​)

Respuesta :

Answer:

Part 1) [tex]y-5=\frac{1}{2}(x-1)[/tex]

Part 2) [tex]y=\frac{1}{2}x+\frac{9}{2}[/tex]  or [tex]y=0.5x+4.5[/tex]

Step-by-step explanation:

we have

​(1​,5​) and ​(3​,6​)

Find the slope

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

substitute

[tex]m=\frac{6-5}{3-1}[/tex]

[tex]m=\frac{1}{2}[/tex]

Part 1) Find the equation in point slope form

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=\frac{1}{2}[/tex]

[tex]point\ (1,5)[/tex]

substitute

[tex]y-5=\frac{1}{2}(x-1)[/tex]

Part 2) Find the equation in slope-intercept form

[tex]y=mx+b[/tex]

we have

[tex]y-5=\frac{1}{2}(x-1)[/tex]

isolate the variable y

[tex]y-5=\frac{1}{2}x-\frac{1}{2}\\\\y=\frac{1}{2}x-\frac{1}{2}+5\\\\y=\frac{1}{2}x+\frac{9}{2}[/tex]