ASAP!! WILL MARK BRAINLIEST FOR FIRST ACCURATE ANSWER!!! FILL IN THE '...'S AND GIVE ME THE SLOPE!!
Using the given equation find the missing coordinates of the points and then find the slope of the line for each equation c y=− 2/3x+ 1/6 ; A(...; 6), B(9; ...)

Respuesta :

The points are A (-8.75;9), B(9,-5.833) and the slope for both equations are [tex]-\frac{2}{3}[/tex]

Step-by-step explanation:

Step 1; The given equation is y = [tex]-\frac{2x}{3}[/tex] + [tex]\frac{1}{6}[/tex]. Assume the unknown x coordinate is x and the unknown y coordinate is y so the points become A(x;6), B(9;y). For point A we calculate the value of x and in point B we calculate the value of y. So by substituting the first point A(x;6) in the equation, we get

y = [tex]-\frac{2x}{3}[/tex] + [tex]\frac{1}{6}[/tex], 6 = [tex]-\frac{2x}{3}[/tex] + [tex]\frac{1}{6}[/tex],6 - [tex]\frac{1}{6}[/tex] = [tex]-\frac{2x}{3}[/tex] , [tex]-\frac{3}{2}[/tex](6 - [tex]\frac{1}{6}[/tex]) = x, x = -8.75

By substituting the second point B(9;y) in the equation we get

y = [tex]-\frac{2x}{3}[/tex] + [tex]\frac{1}{6}[/tex], y = [tex]-\frac{18}{3}[/tex]+ [tex]\frac{1}{6}[/tex] = -6 + [tex]\frac{1}{6}[/tex] = -5.8333.

So the points are A (-8.75;9), B(9,-5.833).

Step 2; Slope is given by the expression m in the equation y = mx + b.

In this equation y = [tex]-\frac{2x}{3}[/tex] + [tex]\frac{1}{6}[/tex], m = [tex]-\frac{2}{3}[/tex] and b = [tex]\frac{1}{6}[/tex]. So the slope, m = [tex]-\frac{2}{3}[/tex].