Respuesta :

Answer:

Option B (1,10)

Step-by-step explanation:

we have

[tex]f(x)=2(5^x)[/tex]

we know that

If a ordered pair is on the graph of f(x) then the ordered pair must satisfy the function f(x)

Verify each case

case A) (0,0)

For x=0

[tex]f(x)=2(5^0)\\f(x)=2(1)=2[/tex]

Compare the value of f(x) with the y-coordinate of the ordered pair

[tex]2\neq 0[/tex]

therefore

The ordered pair is not on the graph of f(x)

case B) (1,10)

For x=1

[tex]f(x)=2(5^1)\\f(x)=2(5)=10[/tex]    

Compare the value of f(x) with the y-coordinate of the ordered pair

[tex]10=10[/tex]

therefore

The ordered pair is on the graph of f(x)

case C) (0,10)

For x=0

[tex]f(x)=2(5^0)\\f(x)=2(1)=2[/tex]

Compare the value of f(x) with the y-coordinate of the ordered pair

[tex]2\neq 10[/tex]

therefore

The ordered pair is not on the graph of f(x)

case D) (10,1)

For x=10

[tex]f(x)=2(5^{10})\\f(x)=2(9,765,625)=19,531,250[/tex]

Compare the value of f(x) with the y-coordinate of the ordered pair

[tex]19,531,250\neq 1[/tex]

therefore

The ordered pair is not on the graph of f(x)