Respuesta :

Answer:

x=50

Step-by-step explanation:

The picture of the question in the attached figure

we know that

If two triangles are similar, then the ratio of its corresponding sides is proportional

In this problem

Triangle RQS and Triangle RPT are similar by AA Similarity Theorem

so

[tex]\frac{RP}{RQ}=\frac{RT}{RS}[/tex]

we have

[tex]RP=PQ+QR=9+3=12\ units\\RQ=QR=3\ units\\RS=17\ units[/tex]

substitute the given values

[tex]\frac{12}{3}=\frac{RT}{17}[/tex]

solve for RT

[tex]RT=17(4)=68\ units[/tex]

Remember that

[tex]RT=RS+ST[/tex]

we have

[tex]RT=68\ units\\RS=17\ units\\ST=x+1[/tex]

substitute

[tex]68=17+x+1[/tex]

solve for x

[tex]x=68-18\\x=50[/tex]

Ver imagen calculista