10)The second-order decomposition of HI has a rate constant of 1.80 x 10-3 M-1s-1. How much HIremains after 27.3 s if the initial concentration of HI is 4.78 M?

Respuesta :

Answer:   [tex][A_t]=3.875\ M.[/tex]

Explanation:

Given,

Initial concentration of HI=4.78 M.

Time taken, t=27.3 s.

Rate constant of reaction, [tex]k=1.80\times10^{-3}\ M^{-1}s^{-1}[/tex].

We know, concentration time equation for second order reaction is.

[tex]kt=ln\dfrac{[A_o]}{[A_t]}[/tex]     ( here [tex]A_o\ and\ A_t[/tex] is initial concentration and concentration at time t respectively).

Putting all given values in above equation.

We get, [tex]1.80\times `10^{-3}\times 27.3=ln\dfrac{4.78}{[A_t]}[/tex]

[tex][A_t]=3.875\ M.[/tex]

Hence, this is the required solution.

Answer:

[tex]\frac{1}{A_t} = 3.875 M[/tex]

Explanation:

Given data:

Rate constant[tex] k = 1.80\times 10^{-3} M^{-1}ms^{-1}[/tex]

t = 27.3 s

initial concentration - 4.78 M

From Rate equation we have following relation

[tex]\frac{1}{A_t} =  kt + \frac{1}{A_o}[/tex]

where

[tex]A_t[/tex] is concentration after time t

[tex]A_o[/tex] is initial concentration

plugging all value in above relation  and solve for concentration at time t = 2.73 s

[tex]\frac{1}{A_t} = 1.80\times 10^{-3} \times 27.3   + \frac{1}{4.78}[/tex]

[tex]\frac{1}{A_t} = 3.875 M[/tex]