Respuesta :
Answer:
d) [tex]l=5\ m[/tex]
e) [tex]v_{avg}=0.25\ m.s^{-1}[/tex]
f) [tex]s_{avg}=v_{avg}=0.25\ m.s^{-1}[/tex]
Explanation:
Given:
- Duration of the first interval of time, [tex]t_1=2.5\ s[/tex]
- speed in the first interval towards left, [tex]v_1=0.8\ m.s^{-1}[/tex]
- duration of the second interval, [tex]t_2=5\ s[/tex]
- speed of the second interval towards right, [tex]v_2=-0.1\ m.s^{-1}[/tex]
- duration of stopping, [tex]t_0=2.5\ s[/tex]
- duration of final interval of the race, [tex]t_3=10\ s[/tex]
- speed towards left in the final interval of the race, [tex]v_3=0.25\ m.s^{-1}[/tex]
d)
Now, the length of the pipe will be the total displacement of the racer.
Then the length of the pipe:
[tex]l=v_1.t_1+v_2.t_2+v_3.t_3[/tex]
[tex]l=0.8\times 2.5-0.1\times 5+0.25\times 10[/tex]
[tex]l=4\ m[/tex]
e)
Average velocity is the total displacement travelled divided by the total time taken to cover the displacement.
so,
[tex]v_{avg}=\frac{l}{(t_1+t_2+t_0+t_3)}[/tex]
[tex]v_{avg}=\frac{4}{(2.5+5+2.5+10)}[/tex]
[tex]v_{avg}=0.2\ m.s^{-1}[/tex]
f)
The average speed is equal to the total distance covered by the racer divided by the total time taken by the racer.
[tex]s_{avg}=\frac{v_1.t_1+v_2.t_2+v_3.t_3}{t_1+t_2+t_0+t_3}[/tex]
[tex]s_{avg}=\frac{0.8\times 2.5+0.1\times 5+0.25\times 10}{2.5+5+2.5+10}[/tex]
[tex]s_{avg}=0.25\ m.s^{-1}[/tex]