Respuesta :
Answer:
[tex]\left \{ x\varepsilon U;x\notin A \right \}[/tex], [tex]\left \{ x\varepsilon U;x \varepsilon A\cap B \right \}[/tex], [tex]\left \{ x\varepsilon U;x \notin A, x \varepsilon B \right \}[/tex], [tex]\left \{ x\varepsilon U;x \notin A, x \notin B \right \}[/tex], [tex]\left \{ x\varepsilon U;x \varepsilon A \cup B \right \}[/tex], [tex]\left \{ x\varepsilon U;x \varepsilon (B-A)\cup (A-B) \right \}[/tex]
Step-by-step explanation:
Set refers to the well defined collection of objects.
We can express a set in set-builder form or in roaster form.
Roster form is a mathematical representation of a set that lists all of the elements of the set within the curly bracket, separated by commas.
A set-builder notation is a mathematical representation for describing a set that lists all of the elements of the set by stating the properties that its elements must satisfy.
Let A be the event that the selected student is classified as enrolled in engineering (one of the engineering schools), and let B be the event that the same student is currently enrolled in this class.
Let U denotes the set of all students currently enrolled in the university.
1. [tex]\left \{ x\varepsilon U;x\notin A \right \}[/tex]
2. [tex]\left \{ x\varepsilon U;x \varepsilon A\cap B \right \}[/tex]
3. [tex]\left \{ x\varepsilon U;x \notin A, x \varepsilon B \right \}[/tex]
4. [tex]\left \{ x\varepsilon U;x \notin A, x \notin B \right \}[/tex]
5. [tex]\left \{ x\varepsilon U;x \varepsilon A \cup B \right \}[/tex]
6. [tex]\left \{ x\varepsilon U;x \varepsilon (B-A)\cup (A-B) \right \}[/tex]