Complete the square to write the quadratic expression in vertex form.
All incorrect or incomplete answers will be reported. Please show all work.

Complete the square to write the quadratic expression in vertex form All incorrect or incomplete answers will be reported Please show all work class=

Respuesta :

Answer:

1. (x - 3)² = 8

2. (x + 2)² = 3

3. (x + 6)² = [tex]$ \frac{101}{2} $[/tex]

4. (x + 3)² = 27

5. (x + 4)² = 13

6.  [tex]$ \bigg( x - \frac{15}{9} \bigg) ^2 = \frac{261}{81} = \frac{29}{9} $[/tex]

Step-by-step explanation:

Completion of Square: [tex]$ (x - a) ^2 = x^2 - 2ax + a^2 $[/tex]

In the following problems the terms in the RHS of the above equation may be missing. We balance the equation. Simplify it and re write it in terms of LHS.

1. x² - 6x + 1 = 0

Taking the constant term to the other side, we get:

x² - 6x = - 1

⇒ x² - 2(3)x = -1

⇒ x² -2(3)x + 9 = - 1 + 9  [Adding 9 to both the sides]

⇒ x² -2(3)x + 3² = 8

(x - 3)² = 8 is the answer.

2. 3x² + 12x + 3 = 0

Note that the co-effecient of x² is not 1. We make it 1, by dividing the whole equation by 3. And then proceed like the previous problem.

3x² + 12x = -3

Dividing by 3 through out, x² + 4x = - 1

⇒ x² + 2(2) + 4 = -1 + 4

⇒ x² +2(2) + 2² = 3

(x + 2)² = 3 is the answer.

3. 2x² + 24x = 29

x² + 12x = [tex]$ \frac{29}{2} $[/tex]

⇒ x² + 2(6)x + 36 = [tex]$ \frac{29}{2} $[/tex] + 36

⇒ x² + 2(6)x + 6² = [tex]$ \frac{29 + 72}{2} $[/tex]

(x + 6)² = [tex]$ \frac{101}{2} $[/tex] is the answer.

4. x² + 6x - 18 = 0

x² + 6x = 18

⇒ x² + 2(3)x = 18

⇒ x² + 2(3)x + 9 = 18 + 9

⇒ x² + 2(3)x + 3² = 27

(x + 3)² = 27 is the answer.

5. x² + 8x + 3 = 0

x² + 8x = -3

⇒ x² + 2(4)x = -3

⇒ x² + 2(4)x + 16 = - 3 + 16

⇒ x² + 2(4)x + 16 = 13

(x + 4)² = 13 is the answer.

6. 9x² - 30x + 6 = 0

9x² - 30x = - 6

⇒ x² [tex]$ - \frac{30}{9} $[/tex] x = - 6

[tex]$ \implies x^2 -2 \bigg( \frac{15}{9} \bigg )x + \frac{225}{81} = - 6 + \frac{225}{81} $[/tex]

[tex]$ \implies x^2 - 2\bigg( \frac{15}{9} \bigg ) x + \bigg ( \frac{15}{9} \bigg ) ^2 = \frac{261}{81} $[/tex]

[tex]$ \bigg( x - \frac{15}{9} \bigg) ^2 = \frac{261}{81} = \frac{29}{9} $[/tex] is the answer.