Respuesta :
Answer:
[tex]\frac{1550}{51}[/tex] cm
Step-by-step explanation:
For the first cylindrical canister:
Let D, R denotes the external diameter and external radius.
Ler r denotes internal radius of the canister.
Let H denotes the height upto which the cylindrical canister contains water.
D = 32 cm
R = D/2 =32/2 = 16 cm
r = R - 1 = 16 - 1 = 15 cm
H = 50 cm
Volume of the first cylindrical canister = [tex]\pi \left ( R^2-r^2 \right )H=\pi\left ( 16^2-15^2 \right )50=\pi\left ( 256-225 \right )50=1550\pi\,\,cm^3[/tex]
For the second cylinderical canister:
Let D', R' denotes the external diameter and external radius.
Ler r' denotes internal radius of the canister.
Let x denotes the height of the second cylindrical canister.
D' = 52 cm
R' = D'/2 = 52/2 = 26 cm
r' = R' - 1 = 26 - 1 = 25 cm
Volume of the second cylinderical canister = [tex]\pi \left ( R'^2-r'^2 \right )H=\pi\left ( 26^2-25^2 \right )x=\pi\left ( 676-625 \right )x=51\pi\,x\,\,cm^3[/tex]
Therefore,
[tex]x=\frac{1550\pi}{51\pi}=\frac{1550}{51}[/tex]
So,
water fills the second canister to the height of [tex]\frac{1550}{51}[/tex] cm.
Answer:
Yeah, what they said above.
Step-by-step explanation: