The value of n is [tex]1\frac{4}{5}[/tex].
Step-by-step explanation:
Given,
[tex](2\frac{2}{3}-n)/-2\frac{1}{5}=\frac{-13}{33}[/tex]
Writing the fractions in simplified form;
[tex](\frac{8}{3}-n)/\frac{-11}{5}=\frac{-13}{33}[/tex]
Taking LCM on left hand side;
[tex](\frac{8-3n}{3})/\frac{-11}{5}=\frac{-13}{33}\\[/tex]
[tex]\frac{8-3n}{3}*\frac{-5}{11}=\frac{-13}{33}\\\\\frac{-40+15n}{33}=\frac{-13}{33}\\\\[/tex]
Multiplying both sides by 33
[tex]33*(\frac{-40+15n}{33})=\frac{-13}{33}*33\\-40+15n=-13\\15n=-13+40\\15n=27[/tex]
Dividing both sides by 15
[tex]\frac{15n}{15}=\frac{27}{15}\\n=\frac{9}{5}\\n=1\frac{4}{5}[/tex]
The value of n is [tex]1\frac{4}{5}[/tex].
Keywords: fraction, division
Learn more about fractions at:
#LearnwithBrainly