Answer:
[tex]x \approx 31.8[/tex]
Step-by-step explanation:
[tex]\frac{\sin(75)}{22}=\frac{\sin(x)}{12}[/tex]
Cross multiply:
[tex]\sin(75) \cdot 12=\sin(x)\cdot 22[/tex]
Divide both sides by 22:
[tex]\frac{\sin(75) \cdot 12}{22}=\sin(x)[/tex]
Take [tex]\sin^{-1}( )[/tex] of both sides:
[tex]\sin^{-1}(\frac{\sin(75) \cdot 12}{22}=x[/tex]
Put left hand side into a calculator now:
[tex]31.7941 \approx x[/tex]
To the nearest tenth that is: [tex]x \approx 31.8[/tex]