Answer:
[tex]k=\frac{32}{5}[/tex], [tex]y=\frac{32}{5}x[/tex]
[tex]k=6.4[/tex], [tex]y=6.4x[/tex]
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]k=\frac{y}{x}[/tex] or [tex]y=kx[/tex]
Find the value of the constant of proportionality k
take any ordered pair from the data
For x=25, y=160
[tex]k=\frac{y}{x}[/tex]
substitute the values of x and y
[tex]k=\frac{160}{25}[/tex]
simplify
[tex]k=\frac{32}{5}[/tex]
The linear equation is equal to
[tex]y=\frac{32}{5}x[/tex]
or
[tex]y=6.4x[/tex]