Respuesta :
Answer:
Molarity = 0.01 M
Explanation:
Molarity is used to measure the concentration of a solution. It will be same for the whole solution or a small amount of solution if the solution is homogeneous.
So, Molarity of 200 mL of solution = Molarity of 50 mL of solution
[tex]\mathbf{Molarity = \frac{number \ of \ moles \ of \ solute}{Volume \ of \ solution \ (in \ liters)}}[/tex]
[tex]\mathbf{Moles = \frac{given \ mass \ of \ compound}{molar \ mass \ of \ compound}}[/tex]
given mass of aspirin = 360 mg = 0.36 g
molar mass of aspirin = 180 g
Volume of solution = 200 mL = 0.2 L
[tex]\mathrm{Mole \ of \ Aspirin = \frac{0.36}{180} = \mathbf{0.002 \ moles}}[/tex]
[tex]\mathrm{Molarity = \frac{0.002}{0.2} = \mathbf{0.01 \ M}}[/tex]
Therefore, Molarity = 0.01 M
50. mL of a sample prepared by dissolving 360. mg of aspirin in 200. mL of solution, has a molarity of 0.0100 M.
First, we will convert 360. mg (0.360 g) to moles of aspirin using its molar mass (180. g/mol).
[tex]0.360 g \times \frac{1mol}{180. g} = 2.00 \times 10^{-3} mol[/tex]
2.00 × 10⁻³ moles of aspirin are dissolved in 200. mL (0.200 L) of solution. The molarity of the solution is:
[tex]M = \frac{2.00 \times 10^{-3} mol}{0.200 L} = 0.0100 M[/tex]
The molarity is an intrinsic property, so a 50. mL sample will have the same molarity as the 200. mL solution.
50. mL of a sample prepared by dissolving 360. mg of aspirin in 200. mL of solution, has a molarity of 0.0100 M.
Learn more: https://brainly.com/question/16727614