Respuesta :

Answer:

The exact values of trignometric functions  [tex]cos\theta, csc\theta and tan\theta[/tex]  are  [tex]cos\theta=-\frac{3}{\sqrt{13}}[/tex]  ,  [tex]csc\theta=-\frac{\sqrt{13}}{2}[/tex]  and [tex]tan\theta=\frac{2}{3}[/tex]

Step-by-step explanation :

To find the exact values of trignometric functions  [tex]cos\theta, csc\theta and tan\theta[/tex]

First we have to find r:  

[tex]r^2=x^2+y^2[/tex]  

Let (x,y) be the given point (-3,-2)

[tex]r=\sqrt{x^2+y^2}[/tex]

Now substitute the x and y values in above equation

[tex]r=\sqrt{(-3)^2+(-2)^2}[/tex]

[tex]=\sqrt{9+4}[/tex]

[tex]=\sqrt{13}[/tex]

Therefore [tex]r=\sqrt{13}[/tex]

Now to find these trignometric values of  [tex]cos\theta, csc\theta and tan\theta[/tex]

[tex]cos\theta=\frac{x}{r}[/tex]

[tex]=\frac{-3}{\sqrt{13}}[/tex]

Therefore [tex]cos\theta=-\frac{3}{\sqrt{13}}[/tex]

[tex]csc\theta=\frac{r}{y}[/tex]

[tex]=\frac{\sqrt{13}}{-2}[/tex]

Therefore [tex]csc\theta=-\frac{\sqrt{13}}{2}[/tex]

[tex]tan\theta=\frac{y}{x}[/tex]

[tex]=\frac{-2}{-3}[/tex]

Therefore [tex]tan\theta=\frac{2}{3}[/tex]

Therefore the exact values of trignometric functions  [tex]cos\theta, csc\theta and tan\theta[/tex]  are  [tex]cos\theta=-\frac{3}{\sqrt{13}}[/tex]  ,  [tex]csc\theta=-\frac{\sqrt{13}}{2}[/tex]  and [tex]tan\theta=\frac{2}{3}[/tex].