Respuesta :

Answer:

172.05 Rounded to 172.1

Explanation:

Using the following formula for the area of a regular pentagon

[tex]A=\frac{1}{4} \sqrt{5(5+25)}a^2[/tex]

[tex]A=\frac{1}{4} \sqrt{5(5+25)}10^2[/tex]

The Area of a regular pentagon will be "172.1 cm³". To understand the calculation, check below.

Regular Pentagon

According to the question,

Side length (a) = 10 cm

We know the formula,

Area of Pentagon =  [tex]\frac{1}{4} \sqrt{5(5+25) a^2}[/tex]

By substituting the values, we get

                              = [tex]\frac{1}{4} \sqrt{5(5+25) (10)^2}[/tex]

                              = [tex]\frac{1}{4} \sqrt{5(30) 100}[/tex]

                              = [tex]\frac{1}{4} \sqrt{150\times 100}[/tex]

                              = 172.05 or,

                              = 172.1 cm³

Thus the above answer is correct.

Find out more information about regular pentagon here:

https://brainly.com/question/858867