Respuesta :

Answer:

Step-by-step explanation:

Given

Circle has radius [tex]r=5 in.[/tex]

Area of the sector is given by

[tex]A_s=\frac{\theta }{2\pi }\times \pi r^2[/tex]

if [tex]A_s[/tex] is one-sixth  of area of circle then

[tex]A_s=\frac{\pi r^2}{6}[/tex]

[tex]\frac{\pi r^2}{6}=\frac{\theta }{2\pi }\times \pi r^2[/tex]

[tex]\theta =\frac{2\pi }{6}=\frac{\pi }{3}\ radian[/tex]

If [tex]A_s[/tex] is one-fourth of area of circle then

[tex]A_s=\frac{\pi r^2}{4}[/tex]

[tex]\theta =\frac{2\pi }{4}[/tex]

[tex]\theta =\frac{\pi }{2}[/tex]