Respuesta :

Answer:

[tex]\frac{(x-1)^{2}}{4}+\frac{y^{2}}{25}=1[/tex]

Step-by-step explanation:

we have

[tex]25x^{2}+4y^{2}-50x-75=0[/tex]

Convert to standard form

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex](25x^{2}-50x)+4y^{2}=75[/tex]

Factor the leading coefficient of each expression

[tex]25(x^{2}-2x)+4y^{2}=75[/tex]

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

[tex]25(x^{2}-2x+1)+4y^{2}=75+25[/tex]

[tex]25(x^{2}-2x+1)+4y^{2}=100[/tex]

Rewrite as perfect squares

[tex]25(x-1)^{2}+4y^{2}=100[/tex]

Divide both sides by the constant term to place the equation in standard form

[tex]\frac{25(x-1)^{2}}{100}+\frac{4y^{2}}{100}=\frac{100}{100}[/tex]

Simplify

[tex]\frac{(x-1)^{2}}{4}+\frac{y^{2}}{25}=1[/tex]