Answer:
[tex]\frac{(x-1)^{2}}{4}+\frac{y^{2}}{25}=1[/tex]
Step-by-step explanation:
we have
[tex]25x^{2}+4y^{2}-50x-75=0[/tex]
Convert to standard form
Group terms that contain the same variable, and move the constant to the opposite side of the equation
[tex](25x^{2}-50x)+4y^{2}=75[/tex]
Factor the leading coefficient of each expression
[tex]25(x^{2}-2x)+4y^{2}=75[/tex]
Complete the square twice. Remember to balance the equation by adding the same constants to each side.
[tex]25(x^{2}-2x+1)+4y^{2}=75+25[/tex]
[tex]25(x^{2}-2x+1)+4y^{2}=100[/tex]
Rewrite as perfect squares
[tex]25(x-1)^{2}+4y^{2}=100[/tex]
Divide both sides by the constant term to place the equation in standard form
[tex]\frac{25(x-1)^{2}}{100}+\frac{4y^{2}}{100}=\frac{100}{100}[/tex]
Simplify
[tex]\frac{(x-1)^{2}}{4}+\frac{y^{2}}{25}=1[/tex]