Respuesta :

Answer:

6

Step-by-step explanation:

The given expression is,

[tex]\frac{5^{x+2}-5^x }{5^x\times4}[/tex]

Now, we know that,

[tex]a^{m+n} = a^m . a^n[/tex]

Then,

[tex]5^{x+2}=5^x . 5^2[/tex]

So,

[tex]\frac{5^{x+2}-5^x}{5^x\times4}=\frac{5^x.5^2-5^x}{5^x\times4}[/tex]

Now, taking [tex]5^{x}[/tex] common from the numerator of the given expression, then

[tex]\frac{5^{x+2}-5^x}{5^x\times4}=\frac{5^x(5^2-1)}{5^x\times4}[/tex]

[tex]\implies\frac{5^{x+2}-5^x }{5^x\times4}=\frac{5^2-1}{4}[/tex]

[tex]\implies\frac{5^{x+2}-5^x}{5^x\times4}=\frac{5\times5-1}{4}=\frac{25-1}{4}[/tex]

[tex]\implies\frac{5^{x+2}-5^x}{5^x\times4}=\frac{24}{4}=6[/tex]

So, the simplified form of the given expression gives the result 6.