Respuesta :
Answer:
c. 0.14
Step-by-step explanation:
Generally, for a given normal distribution, we can estimate the probability of the normal distribution using the equation below:
P (x greater than [tex]x_{min}[/tex]) = pnorm([tex]x_{min}[/tex], mean, sd, lower tail=FALSE)
The following variables are provided in the question:
[tex]x_{min}[/tex] = 15
n = 30
Therefore:
Mean: E(30*X) = 30(0.47)
Standard deviation: 0.15*[tex]\sqrt{30}[/tex]
P (y greater than 15) = 1 - pnorm (15, 30*0.47, 0.15*[tex]\sqrt{30}[/tex])
P (y greater than 15) = 1 - pnorm (15, 14.1, 0.822) = 0.137
The approximate probability is 0.14