Respuesta :
Answer:
[tex]T_{C}[/tex] = -4.2°C
[tex]T_{H}[/tex] = 49.4°C
Explanation:
A Carnot cycle is known as an ideal cycle in thermodynamic. Therefore, in theory, we have:
|[tex]\frac{Q_{C} }{Q_{H} }[/tex]| = [tex]\frac{T_{C} }{T_{H} }[/tex]
Similarly,
|[tex]Q_{H}[/tex]| = |[tex]Q_{C}[/tex]| + |[tex]W_{S}[/tex]|
During winter, the value of |[tex]T_{H}[/tex]| = 20°C = 273.15 + 20 = 293.15 K and |[tex]W_{S}[/tex]| = 1.5 kW. Therefore,
|[tex]Q_{H}[/tex]| = 0.75([tex]T_{H}[/tex] - [tex]T_{C}[/tex])
Similarly,
|[tex]\frac{W_{S} }{Q_{H} }[/tex]| = 1 - [tex]\frac{T_{C} }{T_{H} }[/tex]
1.5/0.75*(293.15-[tex]T_{C}[/tex]) = 1 - ([tex]T_{C}[/tex]/293.15
Further simplification,
[tex]T_{C}[/tex] = -4.2°C
During summer, [tex]T_{C}[/tex] = 25°C = 273.15+25 = 298.15 K, and |[tex]W_{S}[/tex]| = 1.5 kW. Therefore,
|[tex]Q_{C}[/tex]| = 0.75([tex]T_{H}[/tex] - [tex]T_{C}[/tex])
Similarly,
|[tex]\frac{W_{S} }{Q_{C} }[/tex]| = [tex]\frac{T_{H} }{T_{C} }[/tex] - 1
1.5/0.75*([tex]T_{H}[/tex] - 298.15) = ([tex]T_{H}[/tex]/298.15
Further simplification,
[tex]T_{H}[/tex] = 49.4°C
A) The minimum outside temperature for which the house can be maintained at 20°C is; T_L = -4.21 °C
B) The maximum outside temperature for which the house can be maintained at 20°C is; T_H = 37.21 °C
A) Heat transfer rate; Q'_H = 0.75 kJ/s/°C
Rating of heat pump motor; W'_in = 1.5 kW = 1.5 kJ/s
Temperature inside house; T_H = 20 °C = 293.15 K
Formula to find the minimum outside temperature is;
[tex]\frac{Q_{H}}{W'_{in}} = \frac{T_{H}}{T_{H} - T_{L}}[/tex]
Where [tex]T_{L}[/tex] is the minimum outside temperature.
[tex]{Q_{H}} = {Q'_{H}}({T_{H} - T_{L}})[/tex]
Thus, plugging in the relevant values gives;
(0.75/1.5)(293.15 - [tex]T_{L}[/tex]) = 293.15/(293.15 - [tex]T_{L}[/tex])
0.5(293.15 - [tex]T_{L}[/tex]) = 293.15/(293.15 - [tex]T_{L}[/tex])
(293.15 - [tex]T_{L}[/tex])² = 293.15/0.5
(293.15 - [tex]T_{L}[/tex]) = √586.3
[tex]T_{L}[/tex] = 293.15 - 24.21
[tex]T_{L}[/tex] = 268.94 K
Converting to °C gives
[tex]T_{L}[/tex] = -4.21°C
B) Now, we want to find the maximum outside temperature when T_L = 25°C = 298.15 K
Thus, we will use the formula;
[tex]\frac{Q_{H}}{W'_{in}} = \frac{T_{L}}{T_{H} - T_{L}}[/tex]
(0.75/1.5) * ([tex]T_{H} - T_{L}[/tex]) = [tex]\frac{T_{L}}{T_{H} - T_{L}}[/tex]
0.5 * ([tex]T_{H} - 298.15[/tex]) = 298.15/([tex]T_{H} - 298.15[/tex])
149.075 = ([tex]T_{H} - 298.15[/tex])²
√149.075 = ([tex]T_{H} - 298.15[/tex])
12.21 + 298.15 = [tex]T_{H}[/tex]
T_H = 310.36 K
Converting to °C gives;
T_H = 37.21 °C
Read more about carnot engine at; https://brainly.com/question/14983940