Answer:
There is no evidence that there is no significant difference between the sample means
Step-by-step explanation:
given that a statistics instructor who teaches a lecture section of 160 students wants to determine whether students have more difficulty with one-tailed hypothesis tests or with two-tailed hypothesis tests. On the next exam, 80 of the students, chosen at random, get a version of the exam with a 10-point question that requires a one-tailed test. The other 80 students get a question that is identical except that it requires a two-tailed test. The one-tailed students average 7.81 points, and their standard deviation is 1.06 points
The two-tailed students average 7.64 points, and their standard deviation is 1.33 points.
Group One tailed X Two tailed Y
Mean 7.8100 7.6400
SD 1.0600 1.3300
SEM 0.1185 0.1487
N 80 80
[tex]H_0:\bar x=\bar y\\H_a: \bar x \neq \bar y[/tex]
(Two tailed test)
The mean of One tailed X minus Two tailed Y equals 0.1700
t = 0.8940
df = 158
p value =0.3727
p is greater than alpha 0.05
There is no evidence that there is no significant difference between the sample means