An architecture firm creates blueprints for office buildings. Last week, they produced four rectangular blueprints for four different projects. Project A: A 20-inch by 15-inch blueprint with a scale of 1 inch to 4 feet and a projected cost of $22,000. Project B: A 10-inch by 8-inch blueprint with a scale of 1 inch to 8 feet and a projected cost of $25,000. Project C: A 15-inch by 12-inch blueprint with a scale of 1 inch to 6 feet and a projected cost of $27,000. Project D: An 8-inch by 6-inch blueprint with a scale of 1 inch to 12 feet and a projected cost of $30,000. Order the projects from greatest to least projected cost per square foot of the actual offices. Project C Project B Project D Project A

Respuesta :

Answer:

Cost in decreasing order: Project B>Project A>Project D>Project C

Step-by-step explanation:

Project A

Area:  [tex]A=20 in*15 in= 300 in^2[/tex]

Scale: [tex]S=\frac{4 ft *4ft}{1 in*1in}=16 \frac{ft^2}{in^2}[/tex]

Cost:

[tex]C=\frac{22000}{300 in^2*16 \frac{ft^2}{in^2}}[/tex]

[tex]C=\frac{4.58}{ft^2}[/tex]

Project B

Area:  [tex]A=10 in*8 in= 80 in^2[/tex]

Scale: [tex]S=\frac{8 ft *8ft}{1 in*1in}=64 \frac{ft^2}{in^2}[/tex]

Cost:

[tex]C=\frac{25000}{80 in^2*64 \frac{ft^2}{in^2}}[/tex]

[tex]C=\frac{4.88}{ft^2}[/tex]

Project C

Area:  [tex]A=15 in*12 in= 180 in^2[/tex]

Scale: [tex]S=\frac{6 ft *6ft}{1 in*1in}=36 \frac{ft^2}{in^2}[/tex]

Cost:

[tex]C=\frac{27000}{180 in^2*36 \frac{ft^2}{in^2}}[/tex]

[tex]C=\frac{4.16}{ft^2}[/tex]

Project D

Area:  [tex]A=8 in*6 in=48 in^2[/tex]

Scale: [tex]S=\frac{12 ft *12ft}{1 in*1in}=144 \frac{ft^2}{in^2}[/tex]

Cost:

[tex]C=\frac{30000}{48 in^2*144 \frac{ft^2}{in^2}}[/tex]

[tex]C=\frac{4.34}{ft^2}[/tex]