Respuesta :

Answer:

x = 6 ± i√23

Step-by-step explanation:

x² − 12x + 59 = 0

Use quadratic formula.

x = [ -b ± √(b² − 4ac) ] / 2a

x = [ -(-12) ± √((-12)² − 4(1)(59)) ] / 2(1)

x = [ 12 ± √(144 − 236) ] / 2

x = (12 ± √-92) / 2

x = (12 ± 2i√23) / 2

x = 6 ± i√23

The values of x are 1.2 or 10.8.

The given equation is x²-12x+59=0.

We need to find the value of x.

What is the standard form of a quadratic equation?

The standard form of a quadratic equation is ax²+bx+c=0.

Use quadratic formula [tex]x=\frac{-b\pm\sqrt{b^{2} -4ac} }{2a}[/tex]

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

Now, a=1, b=-12 and c=59

[tex]x=\frac{12\pm\sqrt{(-12)^{2} -4\times 1\times 59} }{2\times 1}[/tex]

⇒x=1.2 or 10.8

Therefore, the values of x are 1.2 or 10.8.

To learn more about the quadratic equations visit:

https://brainly.com/question/2263981.

#SPJ2