Answer:
(a+2)(b+2) = 4
Step-by-step explanation:
We are given the following quadratic equation:
[tex]2x^2-3x-6=0[/tex]
Let a a and b be the solution of the given quadratic equation.
Solving the equation:
[tex]2x^2-3x-6=0\\\text{Using the quadratic formula}\\\\x = \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}\\\\\text{Comparing the equation to }ax^2 + bx + c = 0\\\text{We have}\\a = 2\\b = -3\\c = -6\\x = \dfrac{3\pm \sqrt{9-4(2)(-6)}}{4} = \dfrac{3\pm \sqrt{57}}{4}\\\\a = \dfrac{3+\sqrt{57}}{4}, b = \dfrac{3-\sqrt{57}}{4}[/tex]
We have to find the value of (a+2)(b+2).
Putting the values:
[tex](a+2)(b+2)\\\\=\bigg(\dfrac{3+\sqrt{57}}{4}+2\bigg)\bigg(\dfrac{3-\sqrt{57}}{4}+2\bigg)\\\\=\bigg(\dfrac{11+\sqrt{57}}{4}\bigg)\bigg(\dfrac{11-\sqrt{57}}{4}\bigg)\\\\=\dfrac{121-57}{156} = \dfrac{64}{16} = 4[/tex]