Answer:
A. -0.003
B. 0.02
Explanation:
Step 1: identify the given parameters
Giving the following parameters
Wing area (S)= 1.5 m²
Wing chord (C) = 0.45 m
Velocity (V) = 100 m/s
moment about center of gravity(Mcg) = -12.4 N-m
at another angle of attack, L = 3675 N and Mcg = 20.67 N-m
Step 2: calculate the value of the moment coefficient about the aerodynamic center (Cmcg)
[tex]q_{∞} =\frac{1}{2}\rho*v^{2}[/tex]
[tex]q_{∞} =\frac{1}{2}1.225*100^{2}[/tex]= 6125 N/m²
[tex]C_{mcg,w} =\frac{M_{cg,w} }{q_{∞}*S*C }[/tex]
[tex]C_{mcg,w} =\frac{-12.4}{6125*1.5*0.45 }[/tex] = -0.003
[tex]C_{mcg,w}= C_{ac,w}= -0.003[/tex] at zero lift
Step 3: calculate coefficient of lift
Cl = L/q*s
Cl = 3675/6125*1.5 = 0.4
Step 4: calculate the location of the aerodynamic center
New moment coefficient about the aerodynamic center (Cmcg):
[tex]C_{mcg} =\frac{20.67}{6125*1.5*0.45}[/tex] = 0.005
[tex]C_{mcg,w} = C_{ac} ,w + C_{l}(h-h_{ac})[/tex]
[tex]h-h_{ac}= \frac{C_{mcg,w} -C_{ac,w}}{C_{l} }[/tex]
[tex]h-h_{ac}= \frac{0.005-(-0.003)}{0.4}[/tex]=0.02
the location of the aerodynamic center = 0.02