Answer:
The Range is {3, 6}.
Step-by-step explanation:
The correct question is
Find the range of the function below if the domain is {-1,0,2} f(x)=x^2 -2x+3
we know that
The domain represents all possible values of x.
The range represents all possible values of f(x)
Substitute all of the possible x-values (domain) into the formula to find all possible f(x) values (the range).
For x=-1
[tex]f(-1)= (-1)^{2} - 2(-1) + 3[/tex]
[tex]f(-1)=1+2+ 3[/tex]
[tex]f(-1)=6[/tex]
For x=0
[tex]f(0)= (0)^{2} - 2(0) + 3[/tex]
[tex]f(0)=0-0+ 3[/tex]
[tex]f(0)=3[/tex]
For x=2
[tex]f(2)= (2)^{2} - 2(2) + 3[/tex]
[tex]f(2)=4-4+ 3[/tex]
[tex]f(2)=3[/tex]
therefore
The Range is {3, 6}.