An electromagnetic wave has an electric field given by
E? (y,t)=[3.90×105V/mcos(ky−(1.200×1013rad/s)t)]k^
In which direction is the wave traveling?What is the wavelength of the wave?

Respuesta :

Answer:

λ = 157 μm

Explanation:

given,

[tex]\vec{E}(y,t)=[ 3.9\times 10^5\ V/m cos(ky-(1.20\times 10^{13}\ rad/s )t)]\vec{k}[/tex]

now,

ω = 1.2 x 10¹³ rad/s

[tex]f =\dfrac{\omega}{2\pi}[/tex]

[tex]f =\dfrac{1.2\times 10^{13}}{2\pi}[/tex]

f = 1.91 x 10¹² Hz

determine the wavelength of the E M wave

 [tex]\lambda = \dfrac{c}{f}[/tex]

 [tex]\lambda = \dfrac{3\times 10^8}{1.91\times 10^{12}}[/tex]

   λ = 1.57 x 10⁻⁴ m

   λ = 157 x 10⁻⁶ m

   λ = 157 μm

hence, the wavelength of the wave is equal to λ = 157 μm

The wavelength of the wave will be "157 μm".

Given that,

  • [tex]\vec{E}(y,t) = [3.9\times 10^5 \ V/mcos] (ky-(1.20\times 10^{13} \ rad/s)t)] \vec{k}[/tex]

here,

  • [tex]\omega = 1.2\times 10^{13} \ rad/s[/tex]

As we know,

→ [tex]f = \frac{\omega}{2 \pi}[/tex]

By substituting the values, we get

     [tex]= \frac{1.2\times 10 ^{13}}{2 \pi}[/tex]

     [tex]= 1.91\times 10^{12} \ Hz[/tex]

hence,

The wavelength will be:

→ [tex]\lambda = \frac{c}{f}[/tex]

     [tex]= \frac{3\times 10^8}{1.91\times 10^{12}}[/tex]

     [tex]=157\times 10^{-6} \ m[/tex]

     [tex]= 157 \ \mu m[/tex]

Thus the above response is correct.

Learn more about electric field here:

https://brainly.com/question/13872620