Answer:
The solutions are linearly independent because the Wronskian is not equal to 0 for all x.
The value of the Wronskian is [tex]\bold{W=-3e^{7x}}[/tex]
Step-by-step explanation:
We can calculate the Wronskian using the fundamental solutions that we are provided and their corresponding the derivatives, since the Wroskian is defined as the following determinant.
[tex]W = \left|\begin{array}{cc}y&z\\y'&z'\end{array}\right|[/tex]
Thus replacing the functions of the exercise we get:
[tex]W = \left|\begin{array}{cc}e^{5x}&e^{2x}\\5e^{5x}&2e^{2x}\end{array}\right|[/tex]
Working with the determinant we get
[tex]W = 2e^{7x}-5e^{7x}\\W=-3e^{7x}[/tex]
Thus we have found that the Wronskian is not 0, so the solutions are linearly independent.