Answer:
[tex]\large\boxed{\int\bigg(x(x-6)^3\bigg)dx=\dfrac{1}{5}(x-6)^5+\dfrac{3}{2}(x-6)^4+C}[/tex]
Step-by-step explanation:
[tex]\int\bigg(x(x-6)^3\bigg)dx\Rightarrow\left[\begin{array}{ccc}x-6=u\\x=u+6\\dx=du\end{array}\right]\Rightarrow\int\bigg((u+6)u^3\bigg)du\\\\=\int(u^4+6u^3)du=\dfrac{1}{5}u^5+\dfrac{6}{4}u^4+C=\dfrac{1}{5}(x-6)^5+\dfrac{3}{2}(x-6)^4+C[/tex]