Respuesta :

Answer:

Option 3) (0.38,-2.85) and (2.62,3.85)

Step-by-step explanation:

The correct question is

The graphs of y=x^2-3 and y=3x-4 intersect at approximately...

we have

[tex]y=x^2-3[/tex] ----> equation A

[tex]y=3x-4[/tex] ----> equation B

Solve the system by graphing

Remember that the solution of the system is the intersection point both graphs

Equate equation A and equation B

[tex]x^2-3=3x-4[/tex]

[tex]x^2-3x-3+4=0[/tex]

[tex]x^2-3x+1=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^2-3x+1=0[/tex]

so

[tex]a=1\\b=-3\\c=1[/tex]

substitute in the formula

[tex]x=\frac{-(-3)\pm\sqrt{-3^{2}-4(1)(1)}} {2(1)}[/tex]

[tex]x=\frac{3\pm\sqrt{5}} {2}[/tex]

so

[tex]x_1=\frac{3+\sqrt{5}} {2}=2.62[/tex]

[tex]x_2=\frac{3-\sqrt{5}} {2}=0.38[/tex]

Find the values of y (substitute the value of x in equation A or equation B)

For x=2.62 ----> [tex]y=(2.62)^2-3=3.85[/tex]

For x=0.38 ----> [tex]y=(0.38)^2-3=-2.85[/tex]

therefore

The intersection points are approximately  (0.38,-2.85) and (2.62,3.85)